0.1	P.Code: 19HS0832 R19 H.T.No.			
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)				
B.Tech II Year I Semester Supplementary Examinations June-2024 PROBABILITY, NUMERICAL METHODS AND TRANSFORMS				
Tin	(Electrical & Electronics Engineering) ne: 3 Hours	Max.	Mark	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			
1	a Out of 15 items 4 are not in good condition 4 are selected at random. Apply the probability that (i) All are not good (ii) Two are not good	CO1	L1	6M
	b What is the probability that a card drawn at random from the pack of playing cards may be either a queen or a king? OR	CO1	L2	6M
2	a Determine (i) $P(B/A)$ (ii) $P(A/B^C)$, if A and B are events with $P(A) = \frac{1}{3}$	CO1	L5	6M
	$P(B) = \frac{1}{4}, P(A \cup B) = \frac{1}{2}.$			
	b A businessman goes to hotel X, Y, Z, 20%, 50%, 30% of the time respectively. It is known that 5%, 4%, 8% of the rooms in X, Y, Z hotels have faulty plumbing what is the probability that businessman's room having faulty plumbing is assigned to hotel Z	CO1	L5	6M
3	Find a positive root of $f(x)=e^x-3$ correct to two decimal places by Bisection method.	CO2	L1	12M
4	OR Using Newton's forward interpolation formula, Obtain the value of $f(x)$ when $x=1.4$.	CO2	L3	12M
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
5	Tabulate $y(0.1)$, $y(0.2)$ and $y(0.3)$ using Taylor's series method given that	CO3	L2	12M
	$y^1 = y^2 + x$ and $y(0) = 1$			
6	OR Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule.	CO3	L5	12M
	(ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.			
7	a Determine the Laplace transform of $f(t) = e^{3t} - 2e^{-2t} + \sin 2t + \cos 3t + \sinh 3t - 2\cosh 4t + 9.$	CO4	L5	6M

b Find the Laplace transform of $f(t) = \frac{1 - \cos at}{t}$

6M

CO4

L1

OR

8 Applying Laplace transform method to solve $y^{11} - 3y^1 + 2y = 4t + e^{3t}$ where CO4 L3 12M $y(0) = 1, y^1(0) = 1$

UNIT-V

9 a Determine the value of $Z[(-2)^n]$

CO5 L3 6M

b Find $Z^{-1} \left[\frac{z}{z^2 + 11z + 24} \right]$

CO5 L3 6M

OR

10 Solve $y_{n+2} + 2y_{n+1} + y_n = n$ using the Z-transform, given that $y_0 = y_1 = 0$ CO5 L3 12M *** END ***